If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+18x=11
We move all terms to the left:
-5x^2+18x-(11)=0
a = -5; b = 18; c = -11;
Δ = b2-4ac
Δ = 182-4·(-5)·(-11)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{26}}{2*-5}=\frac{-18-2\sqrt{26}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{26}}{2*-5}=\frac{-18+2\sqrt{26}}{-10} $
| 5=3m+2 | | 12x+2=9+5x | | 10x-6x+4x=20 | | 3+(3/2x)+4=4x-(5/2x) | | 6m+3=2m+0.26m+3=2m+0.2 | | 15=-4(6r+8)+24r | | 3x+5=3+1 | | 0.8=12+x | | (5x-3)+58+80=180 | | 18-2(x+4)=3x | | 3z=(3z+2) | | 8x+-12=12x+4 | | 6z+9-4z=14 | | 4-2y=y+10 | | 0.5x=2.65 | | 8d^2+d-5=0 | | 7=-4r+7+4r | | (5x+4)°=(x+26)° | | F(x)=-3x+30 | | f(10)=10/2+8 | | t2− 2=1 | | 12-(4y+8)=0.5(8y-16 | | (7x+16)+39=180 | | 49x+1711x-67=44(40x+23) | | -10=t8 | | y–19=–28 | | 3p-p+2=4(2p-1) | | 7/4h=1/4h−12h | | (4x-17)+36+61=180 | | F(x)=4x+32 | | 0=5+p-p | | –14+2k=9k |